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We consider the problem of determining a potential V(x} in the one-
dimensional Schrédinger equation, given as data the reflectivity r(k) =
|R{k)|% where R{k} denotes the usual quantum mechanical reflection
coefficient. It is well known that in the absence of phase information,
there can be a considerable degree of nonuniqueness, which is closely
connected to the presence of zeros of R(k) in the upper half of the com-
plex plane. Some earlier work of the authors showed that this ambiguity
can be resolved by providing a small amount of extra information about
the potential, In this article we develop a computational technigue,
based on an optimization approach to the problem of locating the zeros
of A{k). Some numerical examples are given.  © 1984 Acagemic Press, Inc.

INTRODUCTION

Let ¥(x) be a real-valued potential on R with V{x) =0 for
x <0 and decaying in a suitable fashion as x - + o0. The
Schrodinger equation

"+ (kP — V(X)) ¢=0, —w<x<w, (11}
then has the solution
Wix, k)=e™ + R(k) e =%, x <0,
~ T(k) e™=, x—+ao, (12)

where R(k), T(k) are reflection and transmission coef-
ficients. We are concerned with the following inverse
scattering problem

Determine the potential V(x) assuming that the
reflection amplitude r(k) = |R(k)|? is known.

This problem is of central importance, for example, in
neutron and X-ray reflectivity studies. See [5] for the
proceedings of a recent conference on this topic.
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It is well known that if the potential has no bound states
then it is uniquely determined by R(k). However, the
absence of phase information introduces considerable
ambiguity, which is directly connected with the presence of
zeros of R(k) in the upper hall of the complex plane. These
zeros are the fundamental obstacle to unique recovery of the
petential, in the sense that they encode all of the informa-
tion about the potential which is present only in the phase
of R(k). Any method for recovery of ¥ must implicitly or
explicitly locate these zeros, by using some kind of extra
information about the potential. In our case the extra data
will consist of partial knowledge of the potential. The fact
that this kind of information can compensate for the lack of
phase data was proven in [8]. Here our main goal is to
investigate a computational algorithm for reconstruction of
a potential ¥{x), given the reflection amplitude r and partial
knowledge of V. See also [11, 5] for some previous work on
this problem. It is closely related to the so-called phase
problem of optics, namely the determination of a function
from the modulus of its Fourier transform, see, e.g.,
[1,6,7].

Recall that the Sobolev space W* *(£2) consists of func-
tions having derivatives up through order & belonging to
L?(£2). We need also the weighted L' space

L;(R)={f: jw L/ (1 +x2)dx<oo}. (13)

Let us define the class of potentials

o ={VeLAR)A W'D, o0): M(x)=0

for x <0, V has no bound states}. {1.4)
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The no bound state condition is satisfied, for example, if
V(x} 2z 0 which holds in many cases of practical interest.

As remarked earlier, we may hope that unique recovery of
the potential is possible, provided certain extra information
about the potential is given; i.e., the class of admissible solu-
tions is suitably restricted. The following theorem of this
type was proved in [81.

THEOREM 1. Assume that Ve o/, Vy=Ilim, _,, V{x)#0
and R{k) has no real zeros of infinite order. Fix ¢ > 0. Then
R(k) is uniguely determined for all real k by r(k) and
{¥Fi(x):0<x <} In particular V(x) is uniquely determined
Sorx=ebhyrk)and {V(x): 0<x<e}.

We now consider some ideas for numerical solution of the
problem whose uniqueness is guaranteed by Theorem 1.
Let us define the mapping T by

T(V)=r, (1.5)

where r(k)=|R(k)]® is the reflection amplitude corre-
sponding to the given potential V. For a given reflectiou
amplitude » and function V= V{x) defined for 0 < x <g,
define the sets of potentials

S ={Vesd: T(V)=r) (1.6)

and

IVy)={Vesd: Vix}=Vyx),0<x<e}. (1.7)

The content of Theorem 1 is that the solution ¥ is the
unique point of intersection of the sets X(r) and I'(Vy). To
obtain the solution numerically there are two natural
optimization approaches we might consider,

min |V =V, (1.8)
VvelZlr)
and the dual problem
min |T(V)—r| (1.9)
Me M{Vo)
for suitabie norms ||-||. In either case it is clear that if the

data (r, V) is consistent, i.e., corresponds to a potential
V e o, then the exact potential ¥ is the unique solution.
We will focus here on the first formulation, the mini-
mization problem (1.8). Some study of (1.9) will appear
elsewhere. The principal advantage of (1.8) is that the
constraint set X'(r) is in a certain sense much smaller than
(V) so that in computing a solution of (1.8) only a
relatively smail parameter space needs to be searched.
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FORMULATION OF AN OPTIMIZATION PROBLEM

For convenience, we will replace the minimization
problem (1.8) by an equivalent one in which the potential
is replaced by its “impulse response function” g= g(¢),
defined by

g(,)=_2‘;fw R(k) e dk (21)

so that

Rik) = jm gl1) e dr =1 ik). (2.2)

[t is known that the potential ¥ on any interval [0, X'}
determines the impulse response function g(r) on [0, 2X]
and conversely. More precisely, g and ¥V are related by the
fact that g(1)=wu(0,¢), where u=u(x, ¢) is the unique
solution of the Goursat problem

My— o+ Vlx)u=0, D<x<t, (2.3)
u (0, 1) —u0,1)=0, 0<t, (2.4)
u(x, x)= %j' Vis)ds, O<x.  (25)

0

The fact that g is determined on [0, 2X] by ¥ on [0, X ] is
a domain of dependence property, which may be proved by
standard energy estimates, while the reverse implication isa
result of time domain inverse scattering theory; see, e.g.,
r1o7].

Thus we may regard g(r) as the unknown function to be
determined, in place of V(x), and we assume that g(t) is
equal to a known function g,(r) for 0 < r < 2.

We now consider
h'gf}) I — goll 120, 26> (2.6}
where
a{ry={he B h(k}|? = rk)) (2.7)
and
B={h:Vesd} (2.8)

is the set of impulse responses corresponding to potentials
in &7. This problem has a unique solution, for consistent
data, according to the previous discussion.

The following is also proved in [87].
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THEOREM 2. Assume the hypotheses of Theorem 1. If
heo(r) then there exists a function a(t) with support in
[0, oo such that

A1) =G} + (G~ a)?)

~G(0)+] als) Gt —s)ds (29)
0
where
Glk) = /r{k) e®*) (2.10)
$(ky=—n+ lim lim —I—
r—+a 0+ 27
log(r{c})
XLQLGQ—EE—ﬁ, r(k)#£0, (2.11)
and
mm=ﬁk'?—1 (2.12)
i=1 k - aj

Wit cONSANIS 4, da, .., A, i the upper half plane. That is to
say,

i) =Gl ] =4

j:1kgaj

(2.13)

The point of Theorem 2 is to exhibit an explicit represen-
tation of the set o(r); namely it may be parameterized by the
set of all finite sequences a,, a,, .., @, of complex numbers
in the upper half plane, which we see are the zeros of the
Fourier transform /.

At this point one might consider the following approach.
Substitute &= g, in the left side of (2.9), and then solve for
a{t) on [0, 2¢]. The function (¢} is analytic and hence is
uniquely determined for all £ > 0. Therefore g(r) and subse-
quently V(x) may be found. The difficulty with this
approach, of course, is that recovery of a{:) for 1>2¢
amounts to an analytic continuation step, which we may
expect to be very unstable. This difficulty will be especially
severe when ¢ is small, because then the computed solution
a{t) will tend to be more inaccurate.

[t seems preferable, therefore, to take a different point of
view, namely to focus on the recovery of the Fourier trans-
form 4, instead of @ itself, that is to seek to determine the ;s
in (2.12}. In this way we are able to exploit the fact that we
have considerable a priorl information about g, through the
form of its Fourier transform. In particular the problem
becomes finite dimensional (albeit with the dimension itself
as one of the unknowns) and no analytic continuation step
will be required. The main disadvantage is that the com-
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putational problem becomes nonlinear. As long as # is not
so large, as often happens in practice, this difficulty does not
seem SO Serious.

DESCRIPTION OF THE ALGORITHM

To proceed, let us define ,(r) to be the set of all Ac #
such that

. R " k_ .
hky= Gy [] —= (3.1)

J=1 k — GJ,—
for some a, .., a, with Im ¢,>0 and G as in (2.10). Terms

with a; on the real axis make no contribution, but it is con-
venient to allow the a;’s to vary over the closed upper half
plane. Also let go(r)= {G}. Then

o

a(ry=J a.(r).

n=0

Jn(r)can+1(r)= (32)

Each o,(r) may be thought of as a 2r real dimensional sub-
manifold of 4. Tf the exact solution g is such that § = R has
N zeros in the upper half plane, then

gea,r), nzN, (33)
and the minimization problem
min [|#— goll 20,20 (34)

heoylr)

has the unique solution g for n = N with zero residual, while
for n < N the residual is strictly positive at any solution of
(3.4).

Thus we can obtain the solution g by solving (3.4} for any
sufficiently large n. In practice it is clearly to our advantage
to have n as close to N as possible, in order to keep down
the size of the parameter space, and also to reduce the
possibility of local minima of the objective functional which
are not true solutions. Thus we might just solve (3.4)
starting with # =0 and then increase » until a zero residual
is found.

Consider now the minfmization problem (3.4) for a fixed
value of n>0 (the n=0 case being trivial). For he # we
must have #(k)=h(—k) so thatifa , occurs in the represen-
tation (2.12), so does —a;. In all cases of interest to us
(e.g., il V(x)=0) the exact solution must satisfy ¢(0)=
R(0)y= —1 from which we may conclude that the number of
a;'s on the imaginary axis must be even.

For simplicity let us actually consider the “generic” case
that (i) no g, lies on the imaginary axis, and (ii) no g, is
repeated. In this case o,(r) effectively depends on » real
parameters, which we may regard as the real and imaginary
parts of the »/2 roots in the positive quadrant. The
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remaining cases could be handled as special limiting
situations. With these assumptions one may derive the
following explicit form for a(t) in terms of the zeros of 4 + 1,
namely,

a(t)= 3, be™ ",

120, (3.5

by=—2Ima[] &

Jeidy—a;

(3.6)

Substitution of {2.9)-(2.12) and (3.51(3.6) into (3.4) will
yield a nonlinear finite dimensional minimization problem.

If we can obtain the correct values @, - - - a,,, then R{k) and
consequently ¥(x) may be found. In the next section we
discuss each step in more detail.

We conclude this section with some remarks about con-
tinuous dependence of the solution on the data. If we are
interested in recovering the potential on an interval [0, X |,
then the “condition number” (ie., the factor by which
relative error in the data is magnified in the solution) clearly
depends in some manner on g, varying from o to 1 as ¢
varies from 0 to X. It also must depend on certain features
of the potential being computed. Roughly speaking, if the
potential has little complexity for 0 < x < ¢, but more com-
plexity away from x>¢, it will be a more ill-conditioned
situation, than when the reverse is true. We may also expect
the conditioning to degenerate as N (the number of complex
zeros of R) increases.

SUMMARY AND EXAMPLES

We now summarize the steps in our algorithm for com-
puting the potential V. Recall that the given data is the
reflectivity {r{k): k >0} and initial segment of the potential
{(V(x):0<x<z}

Step 1. Compute g(k).

Step 2. Compute G(k).

Step 3. Compute G(1).

Step 4. Compute gi?) for0 <1 <2z

Srep 5. Compute N and the zeros a; ---dy.
Srep 6. Compute g(k)= R(k} for k>0,

Step 7. Compute the potential F(x) for x> 0.

We now discuss each of these steps in turn.

Step 1. The phase function $(k) may in principle be
compuied using the integral formula (2.11). To avoid dif-
ficulties with limits, the following alternative formula may
be used [§, Eq. (5.1)],
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dZ
(k+&yrlk+ 1/6):' (4D
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as long as r(k)# 0. The integrand in (4.1) has a removable
singularity at ¢=0, with the limiting value being
(¢ (k)/r{k)) — 2k. Thus ¢{k) may be evaluated by any con-
venient guadrature routine. We remark that the accuracy is
improved by substituting the asymptotic form rik)~
(V,/4k*)? (cf. (2.10) of [8]) for large &.

Step 2. We obtain G(k) directly from (2.10),

Step 3. One may compute the inverse Fourier trans-
form (G(r) with a standard FFT routine. We remark that
since ((7) is real and vanishing for ¢ <0, it may also be
obtained as the cosine transform of Re (k) or the sine
transform of Im G(k). Depending on the situation, one of
these may produce far more accurate results than the other,
and so it will also be more accurate than the standard FFT
which is the average of these two. For potentials in the class
< it will generally be the sine transform of Im G(k) which
is more accurate. See [9] for more discussion of this point.

Step 4. 1f V is given on [0, £], the irnpulse response
function g(z) may be determined as g(¢) = (0, 1), where u =
u(x, t) is the unique solution of (2.3)}-(2.5), which is solvable
in a straightforward way by finite difference techniques. See,
eg, [9]

Step 5. The zeros {a,---a,} are obtained by solving a
finite sequence of minimization problems. We now describe
explicitly the functions to be minimized. Fix an even integer
nz2 and let m=n/2. Set y=(a, §), where a = (a, .., &,,),
B=(8,,...f,) so that o, fcR™ and ye R". We think of
a,+ i, = a; as a typical zero of @ + 1 in the upper half plane,
so actually we restrict f to liein R7 = {feR™: §,>0, j=
1, .., m}. Recall that if «, + if, is a zero, so is —a,+ iff;. Thus
we could restrict « to lie in R7 also, but it seems more con-
venient not to do so. Define R", = {y=(a, §)eR" xR" |.
According to Theorem 2, any heo,(r) is completely
specified by the vector 7.

Now for any ye R",, set

Jiy)=Illh— gl ‘2',2(0,2,:] =G —-g,+axGl 13_3(0.25)’ (4.2)
where
f=11."
a;=uo;+if};, pyy_;=—0;+ [3 j=1,.,m (4.3)

With g, and G fixed, (4.2) depends only on . The con-
volution term a* G may be explicitly evaluated using
(3.5)-(3.6).

A minimum of J over R” corresponds to a solution
g=G+ax G of the minimization problem (3.4). Since
it is more convenient computationally to work with an
unconstrained minimization problem, we extend J to all of
R”, in such a way that the minimum is unlikely to be found
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outside of R", . First, we note that a(¢) is already defined for
any y € R" by formulas (3.5}~(3.6) {even though (2.12) only
defines a if y e R" ), and we can try to ensure that a (local)
minimum of J only takes place for y € R”, by redefining

J(Y)=”G_go+a*G”iz[o_ze)+i1ﬁ7|2- (4.4)
Here / is a positive parameter, |-| is the Euclidean norm on
R™, and f_eR™, is the negative part of §; ie, (f_),=
—min(0, §,). It is not crucial what value of 4 is chosen, since
if we ever obtain a minimum of J with some component of
f being negative, we know that this is an inadmissible solu-
tion, and we simply repeat the calculation with a larger
value of 4. In all the cases that we tried it was sufficient to
take A= 1. By convention, we will say that for n =0, J is the
constant || g — Gl 22, 2)-

The zeros are now obtained as follows. Forn =0, 2, 4, ...
until satisfied, we minimize J over R” using convenient
optimization software, noting the residual value of J at the
minimizer. We stop when a zero residual is obtained, or in
practice when no decrease of the residual is obtained by
increasing n. Rearrangement of the minimizing vector y
yields the desired zeros {a; ---ay}.

In the examples below, the minimization was done using
the MINPACK routine Imdif, which computes the gradient
of J by finite differencing. It would clearly be possible to
obtain analytic expressions flor the partial derivatives of J, if
more speed were required. We remark also that even though
the minimization is in principal over all of R”, the objective
function J appears to be highly coercive, so that all of the
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action really takes place in a fairly limited region of R"
Nevertheless multiple local minima are still a possibility, so
that several different choices of initial guess should be tried.

Step 6. Once a,, .., ay have been found, we obtain
directly

k=g (4.5)
ka4,

7

N
R(k)= (k)= G(k) T]
F=1

Step 7. With the full complex reflection coefficient R(k)
now available, the procedure for recovery of V(x) is classi-
cal, e.g., [3, 4] The numerical procedure we actually used
in the examples shown below, based on {2.1)}-(2.5), 1s taken
from [9].

To illustrate this algorithm with an example, consider the
potential ¥{x) shown in Fig. 1.

The wave function y in (1.2) may be easily computed by
a standard ODE solver, using the conditions that y(x, k) =
T(k) e* for x> 1 and that y, y are continuous. We thus
obtain the reflectivity r(k) which is shown in Fig.2 on a
logarithmic scale. We actually use r(k) sampled at points
k=0025xj j=1,..,2000. We now follow steps 1-7
described above. The phase function ¢ is computed from
(4.1), and we obtain G(k) directly. Recall that G(k) is the
reflection coefficient for a potential I'* which has exactly
the same reflectivity r{k) as V, but with no zeros in the
upper half plane. The difference between the two potentials,
representing the information about ¥ contained only in the
phase of R(k), is considerable, as is shown in Fig. 3.

4 T ™1 B T T 1 | p—
3 —
z 2
= L
1 f—
0
y o0 [ R S T T WO [ N N T AR
0 5 1 1.5
X
FIG. 1. The exact potential te be reconstructed.
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logo[R(k)|

FI1G. 2. The reflection amplitude for the potential of Fig. 1,

We now come to the central task, which is to estimate the
zeros of R(k). We will take £ = 0.3, and in Fig. 4 we show the
two impulse response functions g, G, obtaned in steps 3 and
4, on the corresponding time interval [0, 0.6]. Carrying out
the procedure described in Step 5, we obtain the following
residual values:

minJ=4.1x10"? for n=0,

minJ=77x10"" for n=1

minJ/=14x10""° for n=2,

min/=14x10"7° for n=3.

4 — T T T F T T I T T
I §
I+ —Exact V(x) —
L .
L ~-Computed potential |
B with no zeros in B
the upper half plane
= 2
= L
PR g
0
| J | 1 ! A1 I 1 I | 1 1 | ’ | |

FIG. 3. The exact potential ¥’ shown with the potential ¥'* having the reflection coefficient G(k). Thus ¥, '* have the same reflection amplitude,

but the reflection coefficient of F* has no zeros in the upper half plane.
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FIG. 4. The impulse responses g, G for ¥, V'*, respectively, on the time interval [0, 0.6].

The apparent result, therefore, is that N=4 and the two ¢ further, the accuracy of the reconstruction begins to
zeros found in the first quadrant are a, = 3.668 + 0.4309; degenerate quite rapidly.
and a, = 8.267 + 0.2062i. Finally we substitute these values

into (4.5) to obtain the full complex reflection coefficient SOME GENERALIZATIONS
and obtain the potential V(x) shown in Fig. 5, by the
method of [97]. In Fig. 6 we show the final reconstruction of Some weakening of the conditions we have imposed on

V using the slightly smaller value of ¢ = 0.25, As we decrease  the potential is possible. A case of special interest (e.g.,, [5])

4 T T T T [T T T T [ T T T [ T T
L 4
3 Exact potential —
= 4
[ T N N R Computed potential j
i (e=.3) ]
- 2l —
2
= - \ |
| 1 |
1 —
0
i 0 L I 1 1 ! 1 ! 1 | | i 1 L1 | 1 1]
0 5 1 1.5

FIG. 5. Reconstruction of the potential V using £=0.3.
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V(x)

Exact potential -

- Gamputed potential
(e=25)

FIG. 6. Reconstruction of the potential ¥ using ¢ =0.25,

is when the potentiai is not decaying at + oo, but instead
Hm, , , . F(x)=Fy>0. It is necessary to suitably modify
the definition of scattering data; for example, in (1.2) we
must have

l,[l(x, k) ~ei‘”"2— Vo,\"

where ./k* — V, is understood to be / \/7[, —k*fork* <V,
See, e.g., [2] for a thorough treatment of inverse scattering
for such potentials, and [9] for a computational method.
For this class of potentials, the previous discussion
remains valid formally, but we have not been able to give a
rigorous proof of Theorems 1 and 2 in all respects. Numeri-

X = + o0,
i Fr T T T T T T T T | — T
5 -
' B
= °C B
= P Exact V(x)
21— s Gomputed V(X) —
B (e=2) ]
1 |
i B
I | L1 Y W SR R 0 L
¢] 5 1 1.5

FIG. 7. Reconstruction of a nondecaying potential, using £ =0.2.
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cal evidence strongly suggests that the algorithm we are
proposing here is a valid one for this larger class of poten-
tials. Figure 7 shows the reconstruction of a “three-layer”
potential, for which the corresponding reflection coefficient
turns out to have one pair of zeros in the upper half plane.

Another generalization consists in replacing the jump
condition on ¥(x) at x=0 by a jump condition on some
derivative of V. For example, we might assume that
VI0+)=0, ¥V =lim,_ o, V'(x)#0, and Ve W20, «).
See Section 3 of [8] for some more discussion.

ESTIMATING THE VALUE OF N

The key step 5 in the algorithm would be simplified some-
what if the value of N, the number of terms in the product
of (4.5), were known, or approximately known. We cannot
expect this value to depend in any sense continuously on the
potential, since it is integer valued. Nevertheless, it will often
be the case that the value of N for the unknown potential ¥
will be the same as that for some nearby “reference poten-
tial” V*. Thus it may be of some value to be able compute
the number ¥ for a given potential V. This would not be
very feasible if it were necessary to compute R(k) for many
values of £ in the upper half plane, but it turns out that there
is an easy alternative, resulting from a relationship between
zeros of R{k) in the upper half plane and the behavior of
Rik) on the real axis. Specifically, the number of zeros
of R(k)in {Im k> 0} is directly related to the net change of
arg{ R(k)) on the real axis, that is, the number of times R{k)
winds around the origin of the complex plane as k goes from
-0 to + .

If Fis any continuous complex valued function on R with
F(k)#0 for any ke R, define

k= —o0o0*

i
W(F) =3 (arg F)I{2 2

where arg(-) refers to any continuous {multivalued) deter-
mination of the argument. That is, W{F) is the net increase
in arg F{k) along the real axis divided by 2z, which is the
definition of the winding number.

Integrating R’/R along the real axis with contour closed
in the upper half plane, making use of the classical argument
principie and the asymptotic behavior R(k)~ V,/4k® as
k — o in the upper half plane, we obtain

281

LeMMa. Let V satisfy the hypotheses of Theorem 1,
assume that R has no real zeros, and let N be the number of
zeros of the reflection coefficient R(k) in the upper half plane.
Then N= W(R)— 1.

This result is somewhat analogous to Levinson’s
theorem, which states a relationship between the number of
bound states of a potential, which is equal to the number of
zeros of 1/7(k) in the upper half plane and the winding
number W(1/T}.

CONCLUSIONS

We have proposed an algorithm for the numerical deter-
mination of the potential V{x) in a one-dimensional
Schridinger equation, using as data r(k)=|R(k)!% the
amplitude of the complex reflection coefficient, and partial
knowledge of the potential, {¥(x):0<x<z¢}. In typical
cases, recovery of the phase involves the solution of a non-
linear optimization problem in a relatively low dimensionai
parameter space. We presented numerical examples
showing effective reconstruction of the potential.
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